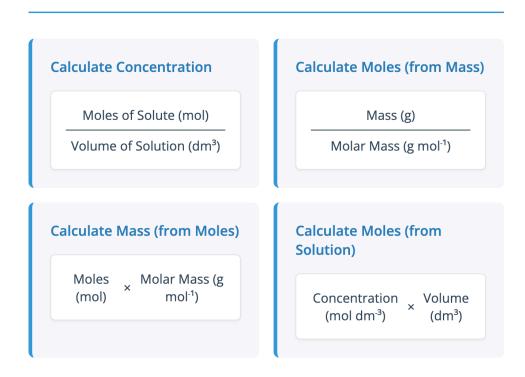
Solutions and Concentrations Revision Notes | CIE | A-Level Chemistry

Defining Concentration

The concentration of a solution is a measure of the amount of solute dissolved in a specific volume of solvent, which is typically water in A-Level Chemistry. The standard unit for concentration is moles per cubic decimetre (mol dm⁻³).


It is important to remember the conversion between cubic centimetres (cm³) and cubic decimetres (dm³):

• $1 \text{ dm}^3 = 1000 \text{ cm}^3$

A solution with a high amount of solute is described as concentrated, while one with a low amount of solute is described as dilute. The relationship between concentration, moles, and volume is given by the formula:

Concentration (mol dm⁻³) = Moles of solute (mol) / Volume of solution (dm³)

Solutions & Concentrations: Key Formulas

Calculating Concentration from Mass

To find the concentration of a solution when you know the mass of the solute and the total volume of the solution, a two-step calculation is required.

- 1. Calculate the moles of the solute by dividing its mass in grams by its molar mass (Mr). Moles = Mass (g) / Molar Mass (g mol⁻¹)
- 2. Convert the volume of the solution from cm³ to dm³ by dividing by 1000.
- 3. Use the concentration formula to determine the concentration in mol dm⁻³.

Example Calculation:

Calculate the concentration of a solution containing 4.0 g of sodium hydroxide (NaOH) in 250 cm 3 of solution. (Mr of NaOH = 40.0 g mol $^{-1}$)

```
Step 1: Calculate moles of NaOH. Moles = 4.0 \text{ g} / 40.0 \text{ g mol}^{-1} = 0.10 \text{ mol}
```

Step 2: Convert volume to dm³. Volume = 250 cm³ / 1000 = 0.250 dm³

Step 3: Calculate concentration.

Concentration = 0.10 mol / 0.250 dm³ = 0.40 mol dm⁻³

Calculating Mass from Concentration

It is often necessary to calculate the mass of a solute present in a solution of a known concentration and volume. This involves rearranging the concentration formula.

- 1. Calculate the moles of solute by multiplying the concentration by the volume in dm³. Moles = Concentration (mol dm⁻³) × Volume (dm³)
- 2. Calculate the mass of the solute by multiplying the moles by the molar mass. Mass (g) = Moles (mol) \times Molar Mass (g mol⁻¹)

Example Calculation

Calculate the mass of anhydrous copper(II) sulfate (CuSO₄) in 50 cm³ of a 0.20 mol dm⁻³ solution. (Mr of CuSO₄ = 159.6 g mol⁻¹)

```
Step 1: Calculate moles of CuSO_4.

Volume = 50 cm<sup>3</sup> / 1000 = 0.050 dm<sup>3</sup>

Moles = 0.20 mol dm<sup>-3</sup> × 0.050 dm<sup>3</sup> = 0.010 mol
```

```
Step 2: Calculate mass of CuSO_4.
Mass = 0.010 mol × 159.6 g mol<sup>-1</sup> = 1.6 g (to 2 significant figures)
```

Titration Calculations

Titration is a practical technique used to determine the unknown concentration of a solution by reacting it with a solution of known concentration. Calculations based on titration data follow a clear, logical sequence.

- 1. Calculate the moles of the reactant with the known concentration and volume (the standard solution).
 - Moles = Concentration × Volume (in dm³)
- 2. Use the mole ratio (stoichiometry) from the balanced chemical equation to determine the number of moles of the other reactant.
- Calculate the unknown concentration using the moles determined in step 2 and the volume of the solution used in the titration.
 Concentration = Moles / Volume (in dm³)

Example Calculation

In a titration, 25.0 cm³ of sodium hydroxide solution is exactly neutralised by 15.00 cm³ of 0.200 mol dm⁻³ sulfuric acid (H₂SO₄). Calculate the concentration of the sodium hydroxide solution.

The balanced equation is: $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

Step 1: Calculate moles of H_2SO_4 . Volume of $H_2SO_4 = 15.00 \text{ cm}^3 / 1000 = 0.01500 \text{ dm}^3$ Moles of $H_2SO_4 = 0.200 \text{ mol dm}^{-3} \times 0.01500 \text{ dm}^3 = 0.00300 \text{ mol}$

Step 2: Use the mole ratio to find moles of NaOH. From the equation, the ratio of NaOH to H_2SO_4 is 2:1. Moles of NaOH = 0.00300 mol × 2 = 0.00600 mol

Step 3: Calculate the concentration of NaOH. Volume of NaOH = 25.0 cm^3 / $1000 = 0.0250 \text{ dm}^3$ Concentration of NaOH = 0.00600 mol / $0.0250 \text{ dm}^3 = 0.240 \text{ mol}$ dm⁻³