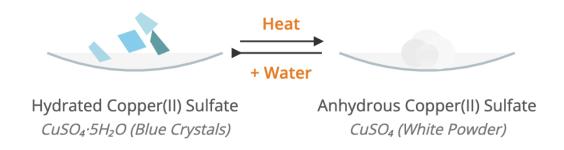
# Hydrated and Anhydrous Compounds Revision Notes | CIE | A-Level

## Water of Crystallisation


Some crystalline compounds incorporate a fixed number of water molecules into their structural lattice. This water is referred to as the water of crystallisation.

## **Key Definitions**

A **hydrated compound** is a substance that contains water of crystallisation within its structure. A well-known example is hydrated copper(II) sulfate, CuSO₄·5H₂O, which is blue.

An **anhydrous compound** is a substance that does not contain water of crystallisation. For example, anhydrous copper(II) sulfate, CuSO<sub>4</sub>, is a white powder.

### Hydrated vs. Anhydrous Copper(II) Sulfate



A single compound can have different degrees of hydration. For instance, cobalt(II) chloride exists as both cobalt(II) chloride-6-water ( $CoCl_2 \cdot 6H_2O$ ) and cobalt(II) chloride-2-water ( $CoCl_2 \cdot 2H_2O$ ).

When writing formulae for hydrated compounds, a dot is used to separate the main formula

from the water of crystallisation.

## Comparison of Hydrated and Anhydrous Compounds

| Feature              | Hydrated Compound                                                                                  | Anhydrous Compound                         |
|----------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------|
| Definition           | Contains a fixed ratio of water molecules (water of crystallisation) within its crystal structure. | Does not contain water of crystallisation. |
| Appearance (Example) | Blue crystals (CuSO₄·5H₂O)                                                                         | White powder (CuSO₄)                       |
| Formula (Example)    | CuSO₄·5H₂O                                                                                         | CuSO <sub>4</sub>                          |
| Formation            | Formed when water is added to an anhydrous compound.                                               | Formed when a hydrated compound is heated. |

#### **Reversible Reactions**

The process of hydration and dehydration is reversible. A hydrated compound can be formed by adding water to an anhydrous compound, and this reaction can be reversed by heating.

 Hydration: An anhydrous compound becomes a hydrated compound upon the addition of water.

$$CuSO_4(s) + 5H_2O(l) \rightarrow CuSO_4 \cdot 5H_2O(s)$$

• Dehydration: Heating a hydrated compound removes the water of crystallisation, leaving the anhydrous compound.

 $CuSO_4 \cdot 5H_2O(s) \rightarrow CuSO_4(s) + 5H_2O(g)$ 

## **Calculating Relative Formula Mass**

To calculate the relative formula mass  $(M_r)$  of a hydrated salt, the mass of the anhydrous part and the mass of the water of crystallisation are calculated separately and then added together.

For example, to find the M<sub>r</sub> of hydrated magnesium nitrate-6-water, Mg(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O:

- 1. Calculate the  $M_r$  of  $Mg(NO_3)_2$ : 24.3 + 2 × (14.0 + (3 × 16.0)) = 148.3
- 2. Calculate the mass of  $6H_2O$ :  $6 \times ((2 \times 1.0) + 16.0) = 108.0$
- 3. Add the two values: 148.3 + 108.0 = 256.3