Worksheet: Electronic Configurations | CIE | A-Level Chemistry

Learning Objectives:

- Understand and define the terms shell, sub-shell, and atomic orbital.
- State the order of filling of electron sub-shells up to 4p.
- Write the full and shorthand (noble gas) electronic configurations for atoms and ions up to Z=36.
- Represent electronic configurations using the 'electrons in boxes' notation.
- Explain the anomalous electronic configurations of chromium (Cr) and copper (Cu).
- Relate the electronic configuration of an element to its position in the Periodic Table.

Section A: Foundational Concepts

- 1. Define the following terms:
 - a. Atomic Orbital
 - b. Principal Quantum Shell
- 2. State the maximum number of electrons that can occupy:
 - a. An s sub-shell:
 - b. A p sub-shell:
 - c. A d sub-shell:
 - d. The third principal quantum shell (n=3):
- 3. State the order in which the following sub-shells are filled with electrons: 3s, 3p, 4s, 3d, 4p

Section B: Configurations of Neutral Atoms

- 1. Write the full electronic configuration for a neutral atom of each of the following elements:
 - a. Magnesium (Mg, Z=12):
 - b. Phosphorus (P, Z=15):
 - c. Argon (Ar, Z=18):

- 2. Write the shorthand electronic configuration (using a noble gas core) for a neutral atom of each of the following elements:
 - a. Calcium (Ca, Z=20):
 - b. Scandium (Sc, Z=21):
 - c. Bromine (Br, Z=35):

Section C: Configurations of Ions

- 1. Write the full electronic configuration for each of the following ions:
 - a. O^{2-} (Z of O = 8):
 - b. Al^{3+} (Z of Al = 13):
- 2. Write the shorthand electronic configuration for each of the following ions:
 - a. Ti^{2+} (Z of Ti = 22):
 - b. Fe^{3+} (Z of Fe = 26):
 - c. Cu⁺ (Z of Cu = 29):

Section D: Exceptions and Patterns

- 1. Explain why the actual electronic configuration of a neutral **chromium (Cr)** atom is [Ar] 3d⁵4s¹ and not the expected [Ar] 3d⁴4s².
- 2. An element has the electronic configuration [Ar] 3d¹⁰4s²4p³.
 - a. Identify the period in which this element is found.
 - b. Identify the group in which this element is found.
 - c. Identify the block (s, p, or d) in which this element is found.

Section E: Application and Analysis

- 1. Draw the 'electrons in boxes' diagram for the valence (outer shell) electrons of a neutral sulfur atom (S, Z=16). Label the sub-shells.
- 2. How many unpaired electrons are there in a gaseous Co^{2+} ion? (Z of Co = 27).

Show your reasoning.

- 3. An element forms a stable ion with a charge of 3+ and has the electronic configuration [Ar] 3d³.
 - a. What is the electronic configuration of the neutral atom?
 - b. Identify the element.

Answer Key

Section A

- 1. a. Atomic Orbital: A region of space around the nucleus that can hold up to two electrons with opposite spins.
 - b. Principal Quantum Shell: A main energy level occupied by electrons.
- 2. a. 2, b. 6, c. 10, d. 18
- 3. 3s, 3p, 4s, 3d, 4p

Section B

- 1. a. 1s²2s²2p⁶3s²
 - b. 1s²2s²2p⁶3s²3p³
 - c. 1s²2s²2p⁶3s²3p⁶
- 2. a. [Ar] 4s²
 - b. [Ar] 3d¹4s²
 - c. [Ar] 3d¹⁰4s²4p⁵

Section C

- 1. a. 1s²2s²2p⁶
 - b. 1s²2s²2p⁶
- 2. a. [Ar] 3d²
 - b. [Ar] 3d⁵
 - c. [Ar] 3d¹⁰

Section D

1. This configuration gives a half-filled d sub-shell ([Ar] 3d⁵4s¹), which is an

ExamFitter.com

arrangement of **lower energy** and therefore **greater stability** compared to the expected configuration ([Ar] 3d⁴4s²).

- 2. a. Period 4
 - b. Group 15
 - c. p-block

Section E

- 1. **Sulfur (S)** valence electrons (3s²3p⁴):
 - 3s: | **↑** ↓ |
 - o 3p: | ↑ ↓ | ↑ | ↑ |
- 2. 3 unpaired electrons. A neutral Co atom is [Ar] 3d⁷4s². To form Co²⁺, the two 4s electrons are lost. The resulting configuration is [Ar] 3d⁷. The 3d sub-shell will have two pairs of electrons and three unpaired electrons.
- 3. a. [Ar] 3d⁵4s¹
 - b. Chromium (Cr)